IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 18, NO. 2, FEBRUARY 2010 237

On Pole-Zero Model Estimation Methods Minimizing
a Logarithmic Criterion for Speech Analysis

Damian Marelli and Peter Balazs, Member, IEEE

Abstract—A speech production model consists of a linear, slowly
time-varying filter. Pole-zero models are required for a good repre-
sentation of certain types of speech sounds, like nasals and laterals.
From a perceptual point of view, designing them by minimizing
a logarithmic criterion appears as a very suitable approach. The
most accurate available results are obtained by using Newton-like
search algorithms to optimize pole and zero positions, or the coef-
ficients of a decomposition into quadratic factors. In this paper, we
propose to optimize the numerator and denominator coefficients
instead. Experimental results show that this is the computationally
most efficient approach, especially when the optimization criterion
considers a psychoacoustical frequency scale. To illustrate its ap-
plicability in speech processing, we used the proposed method for
formant and anti-formant tracking as well as speech resynthesis.

Index Terms—Bark scale, estimation, iterative methods, loga-
rithmic arithmetic, nasals, numerator and denominator, poles and
zeroes, speech analysis, transfer functions.

I. INTRODUCTION

speech production model consists of a linear, slowly time-
A varying filter, called the speech production filter (SPF),
whose input is a combination of a train of impulses and white
noise [1]-[3]. The SPF models the combined effect of the vocal
tract and the radiation at the lips, as well as the glottal pulse
shape in the case of voiced sounds, and it is assumed to be time-
invariant during a short-time period (frame) of approximately
2040 ms. Applications of this technique can be found in speech
coding [4], speech synthesis [5], speaker recognition [6], [7] and
automatic speech recognition [8].

A well-known approach to estimate the SPF is linear predic-
tive coding (LPC) [1], [2], [9], [10]. The LPC technique models
the SPF as an all-pole linear system whose coefficients are ob-
tained by adapting a predictor of the output signal based on its
own previous samples. The use of all-pole models provides a
good representation for the majority of speech sounds. How-
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ever, the representation of some sounds like nasals, fricatives,
laterals, or the burst interval of stop consonants, require the use
of a pole-zero model [2], [4], as these kinds of sounds contain
spectral zeros which are difficult to approximate with an all-pole
model. Detecting zeros is a relevant issue in speaker recogni-
tion [11], automatic speech recognition [8], speech analysis and
coding [12], among others.

Another approach to improve the performance of LPC anal-
ysis is called perceptual linear predictive (PLP) analysis [13],
and consists in using a psychoacoustical frequency scale (e.g.,
the Bark scale [14]) when estimating the SPF. These frequency
scales are fitted to human auditory perception and are often used
in audio applications like speech coding [15] or speech recog-
nition [16].

A pole-zero model estimation method aims to optimize
the coefficients of the numerator and the denominator of the
SPF to match some estimate of its frequency response. Some
methods estimate the numerator and denominator separately,
e.g., Prony’s method [2] or those in [17], [18]. Others do it
jointly [19], [20]. However, the best performances are obtained
using recursive methods [21]-[26]. Motivated by the fact that
the human auditory system is perceiving amplitude of the
frequency contents of a sound signal in a logarithmic scale
[27], some methods aim at minimizing a logarithmic criterion.
An early attempt was done in [28]. The authors of [29] provide
a suboptimal solution to this problem by using a recursive
weighted linear least-squares (WLLS) procedure. While this
algorithm offers satisfactory results with a few number of
iterations, it is not guaranteed to converge. Even if it does so,
it does not reach a local minimum in general. To avoid this
problem, the authors of [30] optimized the positions of poles
and zeros using a Newton-like algorithm. A disadvantage of
this method is that the numbers of real and complex poles and
zeros, as well as their multiplicity order, need to be known a
priori (or obtained from a “guess”). The former information
is not required by the method in [31] which optimizes the
coefficients of the decomposition of the numerator and the
denominator into quadratic factors, instead of pole and zero
positions. However, this method still requires the knowledge
of the multiplicity order of each quadratic factor. In another
research line, and with the aim of improving the computa-
tional complexity of the method in [30], the authors of [32]
approximated the optimization problem in the cepstral domain.
However, a drawback of this approach is that its computational
efficiency is undermined if a psychoacoustical frequency scale
is used in the optimization criterion.

The purpose of this paper is of twofold. First we give a survey
of the available methods for estimating a pole-zero model mini-
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mizing a logarithmic criterion in a unified mathematical frame-
work. In the process of doing so, we propose to carry out the
optimization using a quasi-Newton algorithm, as opposite to the
Newton algorithm used in [30]-[32]. Second, we propose an al-
ternative approach to the methods in [30]-[32], in which we di-
rectly optimize the numerator and denominator coefficients in
the frequency domain. By doing so, neither the numbers of real
and complex poles and zeros, nor their multiplicity order, need
to be known a priori. Also, as we show in Section V, and confirm
experimentally in Section VI, the proposed approach is com-
putationally more efficient than the methods in [30]-[32]. This
computational advantage is even bigger when the optimization
criterion is defined using a psychoacoustical frequency scale. A
potential disadvantage of the proposed approach in comparison
with those in [30]—[32] is that it does not permit a direct control
of pole and zero locations during the iterative procedure, which
could be advantageous in some applications. Another disadvan-
tage is that the numerator and denominator coefficients are more
sensitive to quantization errors than pole and zero positions, or
the coefficients of a decomposition into quadratic factors. While
this turns the proposed approach into an unattractive option for
applications using fixed-point arithmetic, experimental results
using real speech samples show that this is not an issue when
floating-point arithmetic is used. While the motivating applica-
tion considered in this work is the estimation of a model for
the SPF, the proposed algorithm can also find applications in
the modeling of head-related transfer functions (HRTFs), where
pole-zero modeling [31], [33] and perceptual frequency scales
[34] are also relevant.

The rest of the paper is organized as follows. In Section II,
we give an overview of the speech production model, and in
Section III, of those estimation methods which aim at mini-
mizing a logarithmic criterion. In Section IV, we introduce the
proposed estimation method. In Section V we do a computa-
tional cost analysis of all available methods and in Section VI,
we evaluate their performance using real speech samples. We
give concluding comments in Section VII.

II. DIGITAL MODELING OF SPEECH SIGNALS

In the speech production model, the sampled speech signal
y(t) is assumed to be generated by an excitation signal ()
filtered by the SPF, i.e., if g:(7) denotes the time-variant impulse
response of the SPF, then

y(t) =D gu(r)ult — 7). )

TEZ

For unvoiced sounds, the signal u(t) is assumed to be white
noise. In the case of voiced sounds, it is assumed to be a train of
impulses, i.e.,

u(t) =" 8(t — kIp) 2)

kez

where 4(¢) denotes the Dirac delta function and Tp denotes the
pitch period.

The speech signal is divided into frames. For each frame, the
SPF is assumed to be LTI and a parametric model G(z, 6) of the
SPF (# denotes the vector of parameters), is tuned according to
some optimization criterion.

A. All-Pole Model Estimation
In this approach, G(z,6) is built using an all-pole transfer
function [1], [2]. More precisely, § = [a1, . . -, am]T (m denotes
the order of the denominator) and
1

G(z,0) = .
(2,6) 1+az7 4+ +amz™

Then, for each frame, the parameters are chosen as follows:

9 = argmin' 3 [y(t) + A(q,0)y(t)
O eT

2

where A(q,0) = a1q™' +- - + ang~™ (q denotes the forward
time-shift operator, i.e., qy(t) = y(t + 1)) and 7 denotes the
time interval of the corresponding frame.

B. Pole-Zero Model Estimation

These methods model the SPF as a transfer function having
zeros as well as poles. As mentioned in Section I, this is neces-
sary for a better representation of some kind of speech sounds.
Generally speaking, the available methods consist of two steps.

SPF’s Frequency Response Estimation: The first step con-
sists in estimating the frequency response of the SPF. This can
be done by using the all-pole method described above with a
model of very high order [35], [36], using the homomorphic pre-
diction method [37], estimating cepstral coefficients [38], [39],
etc. Each method has its advantages and it is outside the scope of
this work to compare their performances. In this paper, we use
the method described in [40], which builds the SPF’s frequency
response by interpolating spectral peaks found within neighbor-
hoods of the multiples of the pitch frequency.

Pole-Zero Model Tuning: The second step consists in tuning
a pole-zero model to fit the frequency response estimated above.
The SPF is modeled as

B(z,6)
A(z,0)

where 6 is a set of parameters (e.g., containing the numerator
and denominator coefficients, or the real and imaginary compo-
nents of poles and zeros). This is a classical problem in nonlinear
estimation theory and there is a number of available recursive
and non-recursive methods. Some methods aim to solve the fol-
lowing optimization problem (or a weighted version of it):

G(z.0) = 3)

K ; 2
_ A B(ed@r 0"
6 = arg min E G(w) — ’ 4)
A A

CEND

where G (wg) is the estimate of the SPF’s frequency response
and {wr,k = 1,...,K} is a discrete set of frequencies
[19]-[22], [25]. However, as mentioned in Section I, the log-
arithm of the amplitude of the frequency contents of a sound
signal can be a more appropriate measure. Hence, a more
suitable optimization criterion is [28]-[31]

K

f = arg min
min )

k=1

B/, ¢')°

)

The minimization problems in (4) and (5) require the phase in-
formation of the SPF frequency response estimate G(wy,). The
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phase information is usually obtained from the amplitude infor-
mation by assuming that the SPF has minimum-phase. This as-
sumption is not strictly correct in a physical sense since, as men-
tioned in [1], the SPF is a non-minimum phase system. However,
the assumption is still perceptually valid because the human au-
ditory system is for the most part insensitive to phase informa-
tion [27]. Hence, the phase information can be ignored during
the optimization procedure, leading to the following optimiza-
tion criterion [30], [32]

B(eiwr 0" ||?

A ©

log‘é(wk)‘ —log

K
f = arg min E
0[
k=1

The advantage of using (6) over (5) is that, as mentioned in [31],
it achieves a smaller amplitude error in general. Notice that the
model obtained by solving (6) may contain poles and/or zeros
outside the unit circle. To guarantee the stability and the min-
imum phase assumption described above, those poles and zeros
lying outside the unit circle are reflected inside by inverting their
magnitudes.

Bark Scale: As mentioned in Section I, the use of psychoa-
coustical frequency scales is a common practice in speech signal
processing. One of such scales is the Bark scale [14] in which,
for a given frequency f in Hertz, its corresponding Bark value
fv is given by

2
f» = 13 - arctan(0.00076 - f) + 3.5 - arctan (73;0) . (D
5

The criteria (5) and (6) can be modified so that the optimization
is carried out using this frequency scale. This can be done by
either uniformly distributing the grid {wx, k = 1,..., K} in the

desired frequency scale or adding a spectral weighting function
within the optimization criterion.

III. METHODS FOR MINIMIZING A LOGARITHMIC CRITERION

In this section, we give an overview of the available methods
for solving (5) and (6). In Section III-A, we describe a relatively
simple iterative linear least-squares algorithm which, while
not producing an optimal model in general, it requires few
computations and is therefore an attractive option to initialize
more sophisticated methods using Newton-like optimization
techniques. We give a unified view of all these methods in
Section III-B, and in Sections III-B1to III-B3 we summarize
the different methods.

A. Estimation of Numerator and Denominator Coefficients
Using WLLS

An algorithm to solve (5) was proposed in [29], which con-
sists of an iterative procedure in which a previous estimation
of the numerator and denominator coefficients is used to build
a WLLS problem to jointly estimate a new set of coefficients.
More precisely, the SPF is modeled as

Glz,0) = —2izobiz ®
/ L+ wz!
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where n and m denote the orders of the numerator and denom-
inator, respectively. The set of parameters 6 is chosen as

9:[bo,bl,....bn7a17...7am]T (9)

and its value 6; at iteration 7 is given by

K
f; = argmin Y W;(el®)

G(wk)A(ej“k ,0') — B(e“r )

(10
with Wy(e/*) = 1 and

Wi(ejw)
~ . . 2

log G(wk) — log B(e?“*,6;_1) + log A(e7“*,0,_1)
G(wk)A(ej“’k , 01;1) — B(ej“’k , 91',1)

(1)

An algorithm similar to (10) and (11), but used for solving (4)
instead of (5), was given in [21], [22]. It was shown in [25] that
this algorithm, even when it converges, it does not necessarily
converge to a local minimum of the desired cost function. To
avoid this problem, an improvement of this algorithm was pro-
posed [25, Eq. 14]. It was pointed out in [41] that this algorithm
is equivalent to applying the Gauss—Newton algorithm (without
linear search) to (4). Hence, by following an analysis similar to
the one in [25], it follows that the algorithm (10), (11) does not
converge to a local minimum of (5) in general, and that a way
to avoid this problem is to use a Newton-like search method.
Nevertheless, this algorithm yields satisfactory results and, as
reported by the authors, requires few iterations to converge.

B. Estimation Using Newton-Like Search Methods

Equations (5) and (6) are nonlinear least-squares problems
which, as done in [30]-[32], can be solved using any Newton-
like search algorithm. We give a unifying view of these algo-
rithms below. For a comprehensive presentation see [42].

The optimization problems (5) and (6) can be written as

6 = argmin V (6’) (12)
o
K
Vo) = [FO; (13)
k=1

where [F(6)]: denotes the kth component of the real-valued
vector F'(f), which is a function of the d-dimensional
real-valued vector #. Then, (12), (13) are equivalent to (5)
if we define F(0) = [F,, (), F,,(0)]" with

[Fn(0)],, = log % (14)
[F,(9)], = A—Gigfj) . (15)
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forallk = 1,..., K (/z denotes the angle of x), and equivalent
to (6) if we define F'(¢) = F},,(¢). Using Newton-like methods,
(12), (13) is solved using the following iterative procedure:

Biv1 = 0; — if; (16)
where 671 is the solution of
Hif; = gi (17)

the scalar «; denotes the step size at iteration , the d-dimen-
sional vector g; denotes the gradient of V' (6) at §;, and the d x d
matrix H; denotes either the Hessian of V' (6) at 6; or an approx-
imation of it.

Let J(#) denote the Jacobian of F'(6), i.e.,

[7(O)],, = %

}

(18)

The gradient g; can be computed from the Jacobian information
by

gi =277 (0:)F (6:). (19)
The different Newton-like methods differ in the way in which
H; is defined. The Newton method, which was considered in
[30]-[32], consists of taking H; as the Hessian matrix of V()
at 6;. As pointed out in [42], from a practical point of view this
method has some drawbacks. First, it requires the implementa-
tion effort and complexity associated with the computation of
the second order derivatives of V() at 6;. Second, the Hessian
H; may not be positive definite if §; is remote from a local
minimum, and therefore some kind of correction needs to be
introduced (e.g., replacing H; by H; + AI, where A is chosen to
make H; + AI positive definite). Third, it requires the solution
of a system of d linear equations at each iteration. In this paper,
we consider the quasi-Newton method, which avoids these
drawbacks by directly approximating H i_l using some iterative
procedure. A popular choice is the Broyden—Fletcher—Gold-
farb—Shanno (BFGS) formula which is given by [42]

qiTqu_lq’i> SLS;I‘
SZ'T%' S,L-qu'
_sigfHTU + H Ygist

T
S 4i

HiY =H; '+ (1 +

S; = 97‘,+1 —0;
qi = 9i+1 — Gi-

A third Newton-like option is the Gauss-Newton method, in
which H; is calculated using the following approximation of
the Hessian matrix

H; =2J7(6;)J(6;). (20)
The advantage of the Gauss-Newton method is that it requires
fewer iterations than quasi-Newton methods in general. How-

ever, this advantage is somehow counterbalanced by the fact that
it still requires the solution of a system of d linear equations at

each iteration, and the computation of (20) can be costly if a
large number K of frequency points is considered. Besides this,
the main drawback of this approach for our considered applica-
tion is that (20) is a good approximation of the Hessian matrix
of V() only if the residual error ming V() is small. This is not
the case in general in our context, and consequently the method
may fail to converge. Therefore, we do not consider this method
in our application.

Finally, the step-size parameter «; is obtained from a linear
search algorithm. In this paper, following [30] and [31], we
implement it by using a sub-iterative procedure (i.e., formed
of sub-iterations of the main iterations (16), (17)) in which,
starting from the initial value «; = 1, the value of «; is halved
at each sub-iteration until

V(HZ — Oéiéi) < V(HZ)
or a maximum number of iterations is reached.

Different approaches have been proposed to solve (5) and (6)
using Newton-like methods. They differ on the way in which
G(z,0) is parametrized. We summarize them next.

1) Estimation of Poles and Zeros (PZ): In [30], G(z,0) is
parametrized using its poles and zeros. More precisely, G(z, 0)
is written as

Hln=1(1 _ﬂlz_l)
[L2, (1= az71)

and the vector of parameters # in (3) contains the gain constant
C as well as the real and imaginary components of «; and f;.
The optimization problems (5) and (6) can then be written in the
form (12), (13), and the resulting first order derivatives required
to build the Jacobian matrix (18) are given by

OlFmO)]y _ _1

oC - C

G(z,0)=C

for the gain constant

0[Fmn(0)], rie=iwn
a5 T A gon 21
8/81 R 1-— ﬂle*ka ( )
for a real zero of multiplicity 7;, and
a [Fm(ﬁ)]k { Tle_jwk Tle_jw"' }
=R — 22
OR{D1} 1= oo 1 e | P
9 [Fm(0)]x jrie”wn jrieiws
=N o = 23
o3{pi} 1— Bre=i“k 1 — Ble—iwn (23)

for a pair of complex conjugate zeros of multiplicity ;. The
derivatives with respect to pole positions are obtained by taking
the negative values of the right-hand side of (21)—(23) and re-
placing [3; by ay. Also, the derivatives of F}, are obtained by
taking the imaginary components instead of the real components
in (21)—(23).

2) Estimation of Quadratic Factors (QF): Suppose we as-
sume that all poles and zeros of G(z, ) have multiplicity 1.
Even under this assumption, in order to build the vector of pa-
rameters 6 for the method in Section III-B1, the user still needs
to know the number of real and complex poles and zeros (this in-
formation is obtained from the initialization), which will remain
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unchanged during the iterative procedure. In [31], this limitation
is avoided by expressing (3) in quadratic factors, i.e.,

n/2

G(z,0) = C 1=

(1 + b171€7jw"' + b271672jw"')
7;/12(1 + a1,1e7I9k + ag e 20wk

and defining € to contain the gain constant C' as well as the

quadratic factors’ parameters aj ;, az;, | = 1,...,m/2, and
b1y, bay, I = 1,...,n/2. The first-order derivatives are given
by
0 Fm 0 _ —Jwp
Fn®ls _ e R,
0by 1+ by je=3%% + by je=20wx
I[F,.(0 pe—i2wk
POl _ g T . (25)
0by 14 bye—iwr + 52716—2”%

where r; denotes the multiplicity of the quadratic factor. As be-
fore, the derivatives with respect to a1 ; and a; are obtained by
taking the negative values of (24) and (25) and replacing b by a;
and the derivatives of F}, use the imaginary components instead
of the real components in (24) and (25).

3) Estimation of Poles and Zeros in the Cepstral Domain (PZ-
Ceps): Aiming to simplify the Jacobian expression (21)—(23)
when solving (6), the authors of [32] approximated the problem
of Section III-B-1 in the cepstral domain. More precisely, F'(0)
is replaced by

[Cr..(8)]; =C¢(0) — 2log C (26)
1 np nyN
[Cr,, (O)]k1 =Ca(k) — A <Z o — Zﬂf) (27
i=1 i=1
forall Kk = 1,...,K — 1, where Cx (k) denotes the inverse

Fourier transform of log |G(wy)|2. Notice that C' is directly ob-
tained from (26), so only o and 3 need to be estimated. The
resulting first-order derivatives are given by

a[CFm (9)]k _ k-1

on .
for a real zero of multiplicity r;, and
9 [CFm(a)]k _ k—1
BT 2rR {ﬂz } (29)
ICr, ()] _ & [ gkl
W = — 27”16 {ﬂl } (30)

for a pair of complex conjugate zeros of multiplicity ;. Again,
the derivatives with respect to pole positions are obtained by
taking the negative values of (28)—(30) and replacing (; by «;.
While this method is computationally more efficient than the
method in Section III-B1 (see Section V), its efficiency is under-
mined if a psychoacoustical frequency scale is used in the opti-
mization criterion (6). To see this, recall that considering such a
scale is equivalent to consider a linear frequency scale together
with a frequency weighting function in (6). This in turn implies
that the right-hand side of (26), (27) is affected by a convolution,
which complicates the first derivative expressions (28)—(30).
Remark 1: Notice that the gain constant C' can be explic-
itly computed using (26), and hence removed from the vector
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6 of estimated parameters, even when using the methods in
Sections III-B1 and II1-B2 to solve either (5) or (6).

IV. PROPOSED APPROACH: ESTIMATION OF NUMERATOR
AND DENOMINATOR COEFFICIENTS (ND)

The advantage of estimating quadratic factors instead of pole
and zeros positions is that the number of real and complex
poles, as well as zeros, need not be know a priori. However,
this approach still requires the a priori knowledge of the multi-
plicity order of each quadratic factor. The natural approach to
go around this limitation is to directly optimize the numerator
and denominator coefficients. A potential drawback of this
approach is that these coefficients are sensitive to quantization
error [43, Ch. 7.6]; hence, it is not an attractive option in im-
plementations using fixed point arithmetic. However, as shown
in Section VI, this is not an issue if floating point arithmetic
is used. Additionally, and more importantly, this approach
offers computational advantages compared to the methods in
[30]-[32], as shown below.

Define G(z,0) and 6 as in (8) and (9), respectively. It is
straightforward to verify that the first order derivatives are given

by
I[Fm(®)]y _ —em Il
i —%{73 — 0)} G31)
I[Fm(9)]), e Ihor
AL, _m{—A ) (32)

Again, the derivatives of F), are obtained by taking the imag-
inary components instead of the real components in (31) and
(32).
The computational advantages of this approach over the al-
gorithms in [30]-[32] come from the following two facts.
1) It permits an efficient implementation of the linear search
algorithm. To see this, notice that

[F(en - aén)} )

Glwip)A(e7% 0, + aG(wi,) A(ed“* ., 6,,)
B(eiwr 6,) + aB(eiwk, én)

= log (33)

with A(2,0) = A(z,0) — 1 = a127" + -+ + apz™™.
The terms G(wi)B(e/%,0,),  G(wi)A(e7*,0,),
B(e?“*,6,,), and B(e“* . 0,,), forall wy, : k= 1,..., K,
need only be computed once for the whole line search,
simplifying in this way its associated computational cost.

2) Notice that the kth row [J(6)]x,. of the Jacobian matrix can
be written as

[J(O)]y,. = _ngifjc;)’ AV(EU(;:}?;)
where Wp(w) = [l,e79%,.. . e79%"] and W4 (w) =

[e=9%, ..., e 9“™]. So (19) can be efficiently computed by
using

FT(0)J(0) = R{-Dp(0)Qp, P4(0)Q4} (34)
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with
dp(0) = B[(}ngf],le)’”" B[(Fef.il]fe) (35)
Qp = [WE(w), ..., Wh(wr)]" (36)

and ® 4 (0) and Q4 defined by replacing B by A in (35) and
(36). Notice that if the frequency pointswy, : k =1,..., K
are equally spaced, {2 and (24 are K X K discrete Fourier
transform (DFT) matrices with missing columns. Hence,
further computational savings can be achieved using a fast
Fourier transform (FFT) algorithm to compute (34).
Remark 2: 1t is often convenient to express an iterative
algorithm in a compact form as in (10) and (11). If the
Gauss—Newton method is used to solve (6), as shown in
Appendix A, the proposed method can be written as follows:

K
0, = arg minz R {

o k=1

G(wk)A(ej“*‘ s 9,‘,_1)
B(ej‘“k , 91'_1)

A, 0)
A(ejwk y 91'—1)

a; log

B(e?“x, 6) 2

B 0)

(37)
To solve (5), the operation R{-} has to be removed from (37).

V. COMPUTATIONAL COST ANALYSIS

In this section, we carry out a computational analysis of the
different methods when solving (6), which is a preferred crite-
rion in speech processing. We consider the WLLS method of
Section III-A, the method in Section III-B1 which optimizes
pole and zero positions (denoted by PZ), is cepstral domain
counterpart (PZ-Ceps) described in Section III-B3, the method
in Section III-B2 which estimates quadratic factors (QF), the
proposed approach estimating the numerator and denominator
coefficients (ND), and its variant using FFT (ND-FFT) to com-
pute (34) when a regular grid of frequency point is used in (6).

We use the number of real multiplications as the performance
index for comparison purposes. More precisely, a real division
counts as one real multiplication, a complex multiplication re-
quires four real multiplications and a complex division requires
eight. If K is a power of two, a K -point FFT computed using the
Radix-2 algorithm requires 2K log, K multiplications [43, Ch.
6.1]. The computation of the logarithm of a real positive number
can be done with ten multiplications. To see this, we write the
natural logarithm of a real positive number z = m?2™, with man-
tissal < m < 2,asIn(z) = In(27%5m) + (n + 0.5) In(2).
Then we use In(27%5m) ~ 2377 (1/(2i + 1))((27%%m —
1)/(27%5m +1))?**! which guarantees a relative error smaller
than 10~7 in the whole range 1 < m < 2. Finally, the solution
of the system of 2K equations with d unknowns, corresponding
to each iteration (10), requires approximately 2d> K multiplica-
tions [44, Ch. 5.3].

Let d = m + n — 1 denote the total number of parameters to
be estimated, and suppose that the number of frequency points
K is a power of two. In Table I we show, for each method, the
approximate number of real multiplications required for each
main iteration and each sub-iteration.

TABLE I
APPROXIMATE NUMBER OF REAL MULTIPLICATIONS REQUIRED BY EACH MAIN
AND SUB-ITERATION OF THE DIFFERENT METHODS

Main iteration Sub-iteration
WLLS 2d°K -
PZ 4d® +13dK (27 + 6d)K
PZ-Ceps 4d® 4 2dK dK
QF 4d* + 6dK (27 + 4d)K
ND 4d? + (12 + 2d) K 20K
ND-FFT | 4d® + (12 + 4logy K)K 20K

VI. EXPERIMENTAL RESULTS

The proposed pole-zero model estimation method is both,
locally optimal (in the sense of providing a local minimum
of the desired error measure) and computationally efficient.
In Sections VI-A and VI-B, we provide experimental results
confirming this two properties. Also, in order to illustrate the
performance of the proposed method in speech processing
applications, we use it for formant and anti-formant tracking in
Section VI-D as well as for speech resynthesis in Section VI-E.

In the experiments below, we use speech recordings from a
female Icelandic speaker, a female Italian speaker, a male Alba-
nian speaker, a male German speaker, and a male speaker from
the Viennese dialect. The speech recording is done in a sound
booth [semi anechoic chamber (IAC 1202A)], using an AKG
CK91 microphone, a DAT Recorder Tascam with DAT Tapes
Fuji 64p, a sampling rate of 44.1 kHz and 16 bits per sample.
Before processing, the speech signals are resampled at a fre-
quency which is specified below, since it depends on the exper-
iment being carried out. Each speech signal is split in frames
of 48 ms, with a time-shift of 10 ms between frames, and each
frame is multiplied by a Hanning window to improve the shape
of spectral peaks. The envelope of each frame is then obtained
using the method described in [40].

For comparative purposes, we consider the method PZ
(Section III-B1), which is replaced by its cepstral domain coun-
terpart PZ-Ceps (Section III-B3) when a linear frequency scale
is used in (6). We also consider the method QF (Section I1I-B2),
and the proposed ND method (Section IV), which is replaced
by its variant ND-FFT in the case of a linear frequency scale.
We also include three non-optimized methods (i.e., without
involving a on Newton-like search). The first is the WLLS
method described in Section III-A, the second is the iterative
bootstrapping LPC (IBLPC) method introduced in [24], and
the third is the iterative prefiltering (IPF) method considered
in [3], [23], which aims at minimizing (4). The outcome of
optimized methods is highly dependent on the method used for
its initialization. We initialize them using the WLLS method,
since as shown in Tables II-V, this option leads to the most
accurate results in general. As in [30] and [31], these iterative
algorithms are set to stop when

elog(gn) - elog(en—l)

<1077,
elog(gnfl)

(38)

As explained in Section II-B, to guarantee stability and min-
imum phase, the estimated poles and zeros having absolute
values bigger than one are reflected inside the unit circle by
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AVERAGE PERFORMANCE OF THE DIFFERENT METHODS OVER 100 SPEECH SAMPLES USING LINEAR FREQUENCY SCALE, m = 20 AND n = 10

TABLE II

AVERAGE PERFORMANCE OF THE DIFFERENT METHODS OVER 100 SPEECH SAMPLES USING LINEAR FREQUENCY SCALE, m = 20 AND n = 20

Av. value Variance Av. number of | Av. number of | Av. number of

of elog of elog main iterations | sub-iterations | multiplications
IPF 10.27 x 102 | 20.54 x 1074 5.6 0 13 x 10°
IBLPC | 8.974x 1072 | 13.60 x 107* 3 0 6.3 x 10°
WLLS | 5.595 x 1072 | 3.994 x 10~ 3.4 0 8.6 x 10°
PZ-Ceps | 4.749 x 102 | 2.788 x 10~* 74 498 21 x 10°
QF 4738 x 1072 | 2.776 x 1074 69 468 86 x 106
ND-FFT | 4.698 x 107 | 2.713 x 1074 52 508 13 x 109

TABLE III

AVERAGE PERFORMANCE OF THE DIFFERENT METHODS OVER 100 SPEECH SAMPLES USING BARK FREQUENCY SCALE, m = 20 AND n = 10

Av. value Variance Av. number of Av. number of | Av. number of

of elog of elog main iterations sub-iterations | multiplications
IPF | 7.798 x 1072 | 16.29 x 10~ 5.5 0 22.5 x 10°
IBLPC | 7.080 x 1072 | 9.863 x 107* 6 0 20 x 10°
WLLS | 3.723 x 10 | 2.752 x 10~* 4.7 0 19.7 x 10°
PZ-Ceps | 3.201 x 10 | 1.720 x 10~* 105 657 37 x 100
QF 3.214 x 1072 | 1.736 x 107* 101 618 147 x 10°
ND-FFT | 3.173 x 1072 | 1.672 x 10~ 64 707 18 x 109

TABLE IV

Av. value Variance Av. number of | Av. number of | Av. number of
of ejog of ejog main iterations | sub-iterations multiplications
IPF | 11.84x 1072 | 36.94 x 107~* 5 0 11.9 x 10°
IBLPC | 11.21 x 1072 | 26.15 x 107 5 0 10.5 x 10°
WLLS | 6.816 x 1072 | 10.00 x 10~* 2.7 0 7.3 x 10°
PZ 5.630 x 102 6.892 x 1074 84 504 145 x 106
QF | 5.709 x 107 | 6.750 x 107* 77 472 88 x 10°
ND | 5.563 x 102 | 6.000 x 107* 57 520 15 x 10°
TABLE V
AVERAGE PERFORMANCE OF THE DIFFERENT METHODS OVER 100 SPEECH SAMPLES USING BARK FREQUENCY SCALE, m = 20 AND n. = 20
Av. value Variance Av. number of |Av. number of | Av. number of
of elog of elog main iterations | sub-iterations | multiplications
IPF | 8.440 x 1072 |15.20 x 10~ 5 0 20.7 x 10°
IBLPC | 8.063 x 107 |11.29 x 10~ 6 0 20 x 10°
WLLS | 4.272 x 1072 |3.512 x 107 3.3 0 15 x 106
PZ 3.600 x 102 {1.969 x 107 108 647 241 x 10°
QF | 3.580 x 102 {1.884 x 10~ 106 608 146 x 10°
ND | 3.535 x 102 [1.797 x 107* 68 715 22 x 106
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inverting their magnitudes. We use floating-point, double-preci-
sion (64 bits) arithmetic, and to quantify the residual estimation
error we use

6105(6) = %Z

k=1

; 2
B(el¥k
—log (7=, 0) H .

A(eiwr, 0)

log ‘G(ej“”“)

A. Computational Efficiency

In this section, we evaluate the complexity of the different
methods for estimating a pole-zero model for the SPF using the
design criterion (6). To this end we used a resampling frequency
of fs = 16 kHz. We have chosen a set of 100 sound segments
each containing a phoneme with a spectral zero (anti-formant),
and we have obtained a frame from the center of each segment.
We have considered the following phonemes and allophones:

* voiced bilabial nasal consonants /m/;
e voiced alveolar nasal consonants /n/;
* voiced velar nasal consonants /7n/;
» voiced apical alveolar lateral consonants /1/;
* voiced apical dental lateral consonants with retracted
tongue body /I/ [45];
» voiced apical alveolar monolateral consonants with re-
tracted tongue body, which we denote by 1V/.1
An issue in the estimation of a pole-zero model is the selec-
tion of the numerator and denominator orders (i.e., n and m).
Following the rule of thumb m = f;/1000 + 4 [1] we have
chosen m = 20. Unfortunately, there is no standard choice for
n; however, it is reasonable to state that 20 is an upper bound for

I'This consonant appears in the Viennese Dialect. It is produced with an apical
closure at the alveolar ridge. The tongue body is retracted and lowered, and the
pharynx is narrowed. The air escapes only from one side of the tongue.
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Fig. 1. Estimation of a monolateral consonant /1Y / using IPF (e, = 11.73 X
1072), IBLPC (€0 = 6.764 x 1072), WLLS (ejo; = 6.738 x 1072), and

ND-FFT (e10g = 5.571 x 1072), with m = 20 and n = 10.
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Fig. 2. Estimation of a lateral consonant /I/ usingIPF (e, = 12.97 X 1072),
IBLPC (€1, = 10.41 x 1072), WLLS (€10, = 10.67 x 1072), and ND-FFT

(€10g = 8.369 x 1072), with m = 20 and n = 10.
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Fig. 3. Estimation of a lateral consonant /I/ using IPF (e}, = 9.216 x 1072),
IBLPC (€1, = 6.429 X 10~2), WLLS (105 = 6.479 X 10~2), and ND-FFT
(10 = 4.591 X 1072), with rn = 20 and n = 10.

any choice. Hence, we have carried out the experiments using
two values, n = 10 and n = 20.

In the first experiment, we evaluate the performance of the
methods IPF, IBLPC, WLLS, PZ-Ceps, QF, and ND-FFT, when
using a linear frequency scale. To this end we use K = 1024
regularly spaced frequency points wy, & = 1,..., K in the
range [0, fs/2]. We show in Tables II and III the results obtained
using both, n = 10 and n = 20. We see that the errors ob-
tained using the PZ-Ceps, QF, and ND-FFT methods are similar.

Speech Spectrum

O, —Envelope
—IPF
3 —IBLPC
-20 —WLLS

—ND-FFT

Amplitude [dB]

4000 6000 8000

Frequency [Hz]

0 2000

Fig. 4. Estimation of a nasal consonant /n/ using IPF (e;,, = 11.51 x 1072),
IBLPC (€10, = 5.405 x 10=2), WLLS (10, = 4.955 x 10~2), and ND-FFT
(é10g = 3.932 x 1072), with m = 20 and n = 10.

Speech Spectrum
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4000 6000 8000
Frequency [Hz]

0 2000

Fig. 5. Estimation of a nasal consonant /n/ using IPF (ejo, = 15.45 x 1072),
IBLPC (€105 = 9.304 X 10-2), WLLS (€10, = 7.617 x 10~2), and ND-FFT
(€10 = 5.672 x 1072), with mm = 20 and o = 10.
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Fig. 6. Estimation of a nasal consonant /m/ using IPF (e, = 11.68 x 10*2),
IBLPC (€105 = 12.86 x 1072), WLLS (e1o; = 7.418 X 1072), and ND-FFT
(flog = 5.063 x 10~2), with m = 20 and n = 10.

Also, the PZ-Ceps and ND-FFT methods are clearly more effi-
cient than the QF method, with ND-FFT requiring nearly half
the computations required by the PZ-Ceps method.

In the second experiment, we evaluate the performance of the
methods IPF, IBLPC, WLLS, PZ, QF, and ND when using a
nonlinear frequency scale. We use K = 1024 frequency points
in the range [0, f,/2], regularly spaced in the Bark scale. We
show in Tables IV and V the results obtained using both, n = 10
and n = 20. Again, we see that the errors obtained using the
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PZ, QF, and ND methods are similar; and in this case, the ND
method is clearly the most efficient option.

B. Local Optimality

Tables II-V show that the methods IPF, IBLPC, and WLLS
have a complexity comparable to that of the proposed methods
ND and ND-FFT. However, the former do not yield a local op-
timum of 6 in general, and in some cases can lead to inaccurate
estimates. To illustrate this point, we show in Figs. 1-6, the out-
comes of the methods IPF, IBLPC, WLLS, and ND-FFT. We
see that, while the WLLS method produces a model which ap-
proximately follows the speech envelope, it can be affected by
inaccuracies, which in Fig. 1 result in the model not properly re-
producing the spectral zero at about 3.3 KHz, and in Figs. 2 and
3 having resonant frequencies. Also, the IPF method approx-
imately follows the speech envelope, but it is not accurate at
frequencies where the amplitude of the envelope becomes neg-
ligible in the linear scale. This effect is clearly seen in Figs. 4
and 5. Finally, some examples where the IBLPC method leads
to inaccurate estimates are shown in Figs. 5 and 6.

C. Using Nonlinear Frequency Scales

We see in Fig. 4 that the ND-FFT method does not reproduce
the formant at about 1500 Hz, since its amplitude is not signif-
icant in the logarithmic scale. However, it may be argued that
this spectral feature is more relevant than others found at higher
frequencies. While this issue can be dealt with by increasing the
model order, this may not be a preferred option in applications
where complexity and/or number of parameters are restricted.
An alternative approach is to distribute the grid of frequency
points wg, k = 1,..., K so that the desired frequencies are
given more importance. To illustrate this approach, we compare
in Fig. 7 the outcomes of the ND-FFT method, which distributes
the points wy, k = 1,..., K uniformly in the linear frequency
scale, with that of the ND method using the Bark scale instead.
We see that the ND method accurately follows the spectral enve-
lope at low frequencies, including the formant at about 1500 Hz,
with the price of not reproducing the zero at about 6800 Hz. A
similar situation occurs with the zero at about 2600 Hz in Fig. 5.
Again, we see in Fig. 8 that this zero is more accurately mod-
eled by the ND method when using the bark frequency scale,
with the price of not reproducing the zero at 4400 Hz.2

D. Formant and Anti-formant Tracking

In order to illustrate the applicability of the proposed method
for speech analysis, we use the estimated SPF models to track
the evolution of formants and anti-formants from the Italian
word “capanna” (hut), pronounced by a female native speaker.

2Fig. 5 shows that the IPF method is also able to model the zero at about
2600 Hz, even when a linear frequency scale is used. The reason for this is that
the IPF method considers a linear amplitude scale [i.e., it aims at minimizing
(4)], where the magnitude of this spectral feature becomes more significant.
However, as mentioned before, a drawback of this approach is that it does not
permit modeling relevant spectral features which are negligible in the linear
amplitude scale. This behavior can be observed at frequencies above 3500 Hz
in Fig. 5.
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Fig. 7. Estimation of a nasal consonant /n/ using linear and Bark frequency
scales, with m = 20 and n = 10.
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Fig. 8. Estimation of a nasal consonant /n/ using linear and Bark frequency
scales, with rm = 20 and n = 10.

We used a resampling frequency of f; = 8 kHz, and the
ND-FFT method with n = m = 10, optimized using a grid
of K = 1024 frequency points regularly spaced in the linear
scale. In Fig. 9, we show the poles and zeros of the estimated
models, and in Fig. 10 we show the model obtained at 450 ms,
corresponding to the nasal consonant /n/, which spans from
approximately 350 to 500 ms. It can be seen that, during this
phoneme, the first two formants are tracked by poles at about
200 and 750 Hz, being consistent with the low-frequency
description of nasal consonants given in [46]. The first anti-for-
mant is tracked by a zero at about 1200 Hz, and corresponds to
the resonance of the mouth cavity closed by the tongue tip. As
pointed out in [46], this anti-formant is above the second for-
mant, and another anti-formant is expected at about three times
this frequency. This is tracked in Fig. 9 by a somehow irregular
string of zeros at about 3600 Hz. The third and fourth formants
are tracked by poles at about 1700 and 3000 Hz, respectively.
Two extra string of zeros appear at about 750 and 2200 Hz,
the first of which is close to the second formant, and therefore
reduces its amplitude (as seen in Fig. 10), and the second is
present along the whole word. These zeros could correspond
to the resonance of sinuses which, as explained in [11], are
subject to individual variations and a general estimate about
their location cannot be given. In any case, Fig. 9 shows the
consistency of the results obtained from frames corresponding
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Fig. 9. Poles (x) and zeros (0) of the SPF models estimated from the word
“capanna.”
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Fig. 10. Spectral slice from Fig. 9 at 450 ms. Nasal consonant /n/ in the word
“capanna.”

to the same phonetic element, as well as some agreement with
the values expected from speech production theory.

E. Speech Resynthesis Performance

In order to illustrate the perceptual relevance of the proposed
method, we used the SPF models estimated from a speech signal
to resynthesize it. We used a resampling frequency of f, =
16 kHz, and the ND-FFT method with n = m = 20, opti-
mized using a grid of K = 1024 frequency points regularly
spaced in the linear scale. For pitch frequency and voicing de-
tection, we used the implementation of the RAPT algorithm
[47], which forms part of the publicly available VOICEBOX
Matlab toolbox. We generated the synthetic speech signal by
overlap-adding speech frames, as described in [3]. We resynthe-
sized the three German words “diimmer, diinner, diinger” (sil-
lier, thinner, fertilizer) pronounced by a male Viennese speaker.
These German words form minimal pairs in the sense that they
only differ from each other in the nasal consonants /m/, /n/, and
/m/, and hence they can be better recognized if spectral zeros
are properly reproduced. The spectograms of the original and
resynthesized speech signals are shown in Figs. 11 and 12, re-
spectively, from where we can see that they reasonably resemble
each other. For a perceptual evaluation, the sound examples can
be found at http://www.kfs.oeaw.ac.at/polezero.
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Fig. 11. Spectrograms of the original speech signal “diimmer, diinner, diinger.”
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Fig. 12. Spectograms of the resynthesized speech signal “diimmer, diinner,
diinger.”

VII. CONCLUSION

We proposed a method to estimate a pole-zero model for
speech production which is both, numerically efficient and op-
timal when minimizing a logarithm criterion. To this end, we
optimize the numerator and denominator coefficients, instead of
pole and zero locations, or the coefficients of a decomposition
of the model into quadratic factors. We presented experimental
results showing the efficiency and optimality of the proposed
method. To illustrate its applicability in speech processing, we
used it for formant and anti-formant tracking as well as speech
resynthesis.

APPENDIX A
PROOF OF (37)

Let J,,, (/) denote the Jacobian of F3,, () at 6. The ith iteration
of the Gauss—Newton method can be written as

0;

N2
a; arg min HFm(Gi_l) - Jm(ei_l)HH 40
2

]
(0:-1) = Jm(8;-1)(0 — 0 1) |5 (39)

= argmin ||a; Fyp
0

where | X || = S5, |[X]x[?. Recall that A(z, ) =
l=aiz7 '+ -+ amz""™, then

A(z,0) —

[T (0i1)(0 = 0i_1)],,
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B _B(ej“”*‘,ﬂ) — B(ed“r,0;_1)
o B(ej“""79i,1)
A(e?r 0) — A(e?*r,0;_1)
A(ejwk,ei_l)
_ B(el** . 0)
= {_B(ejwk ) 01'—1)

A(ed@r 9)
e Y

and (37) follows from (39), (14), and (40).
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